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tion errors of the difference method. Moreover, any error introduced in the nuinerical 
solution of y' 15 exp [15t] will be damped by exp [- 14t] in the substitution 
into (y, t) = y exp [-14t]. 

Tables 1, 2, 3, and 4 give comparisons of relative errors in the numerical solu- 
tion of x' 15et - 14x obtained by direct integration, versus the solution obtained 
by using the alternate equationi. The method used is Adams-Bashforth 16th order 
predictor and Adams-Moulton 15th order corrector. The region of numerical 
stability (for one application of the corrector) is -.007 < h ? .011. The tables 
display results using step sizes that caused h to lie both inside (Table 1) and outside 
(Tables 2, 3, 4) of the stability region for the direct integration. All integrations 
connected with the solution using the altemate equation are within the stability 
region. 
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Some Fourth Order Multipoint Iterative Methods 
for Solving Equations 

By P. Jarratt 

1. Introduction. Multipoint iterative methods find new approximations to a 
zero of a function f(x) by sampling f and sometimes its derivatives at each itera- 
tion at a number of values of x. Although they have not been much used in practice, 
one interesting class of formulae, investigated by Traub [1, pp. 197-204] is computa- 
tionally attractive in problems where the evaluation of f'(x) is rapid compared with 
f(x). Such cases arise, for example, whenf(x) is defined by an integral. Traub showed 
that for iterative formulae of the type 

Xn+= Xn- awi(xn) - a2w2(xn) where 
( 1. 1) Wi(X) =f(x)/f(x), W2(X) = f(x) 

f'[x + axwi(x)]' 

third order processes costing one evaluation of f(x) and two of f'(x) per iteration 
could be constructed by suitable choices of the parameters al, a2 and a. It was not 
possible, however, to obtain fourth order formulae without increasing the number 
of derivative evaluations. In this paper, a class of iterative methods of the form 
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Xn+1 = Xn- -(Xn) - 2(xn), where 

(1.2) 4)i(x) = a,wi(x) + a2w2(x) and 

4)2(X) =f(x)iseand 
bif '(x) + b2f'[X + awi(x)] i examined 

and it is shown that in this case fourth order formulae are available costing one 
function and two derivative evaluations per iteration. 

2. Fourth Order Formulae. In order to study the properties of the iteration 
(1.2) we assume that f(x) has a simple zero at x = 0 and we define the error en 
of the nth approximation by xn = En + 0. Using now the Taylor expansions of 
f(xn) and f'(xn) about 0 we have 

/2 

(2.1) WI(Xn) = en - -En + 2 ( 2 - C-n3 + ?[En 

\lCi2 Cl! 

and hence 

W2(Xn) = - C2 (1 + 2a) n2 
Cj 

(2.2) + [2c (2&2 + 4a + 1)- c- (3a + 6ac + 2)1 e + O[en ], where 
L Ci C1 

Cr r= X! and co = f(0)=O 

From (2.1) and (2.2) we can show that 

l( Xn)= (a, + a2 ) -n - -[a, + a2(1 + 2a)]En2 
Cl 

(2.3) + {2 C2 [a, + (2ae2 + 4ac + 1)aj 

-C3 [2a, + (3a + 6a + 2)a2} E3 + O[E 41 

and 

(P2(Xn) =l En + -2_C 
P 

n 
pi Pi pi 

+ C3 + p2 _P32)c P22 c n3 +?n4], hr 
(2.4) ~~+[- +( 2cl 

- 
C2] En + O[EC-] where ( 2.4 ) -Pi pl3 Pi Pi 

pi = ci(bi + b2), P2 = 2c2[bi + (1 + ax)b2] and 

P3 = 3c3bi + b2 [3c3(1 + ac)2-2C2 a]. 

By substituting (2.1)-(2.4) in (1.2) and collecting terms, it can be seen that for 
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(1.2) to be fourth order, the following system of equations must be satisfied: 

1-a - a2 - b+ = 0 

(2.5) a2+ (b, + b2)2 2a 

(b, + b2)3 2a!2 

a2+ b2- 
1 

(b, + b2)2 3a 2 

This is a set of four equations for the five free parameters a1, a2, bi, b2 and a,but 
for consistency we have immediately from the second and last equations that 

= -2. The system (2.5) is hence reduced to 

a, + a2 + +b X al- 
a21--bi + b2=1 

(2.6) 
________- 

3 
a2 + (b, + b2)2 4 

b22 9 
(b, + b2)3 8 

The value a = -3- is fortunately good for our purposes since it implies that our 
second sample point, xn + awi(x x), is in most cases nearer to the zero than x . 

In solving the system (2.6) it is convenient to eliminate bi by writing 
b2/(b1 + b2) = 0, and for 0 :z? 0, 0 :z? 1, the general solution in terms of 0 is then 

a, = 4 (1 + 20) a2 = 4 (1-2(b 1)) and b2 = 8 (0-1) 

The special case 0 = 1 implies bi = 0 while 0 = 0 gives b2 = 0. In both instances 
(1.2) degenerates to (1.1). More generally, with 0 :z? 0, 0 :z? 1, we can construct a 
class of fourth order formulae requiring only one function and two derivative evalua- 
tions per iteration by assigning numeric values to 0. Appropriate values of 0 to 
choose might be those such that the form of (1.2) is simplified. Thus 0 = -3 

gives us a, = 0, the values of the other parameters then being a2 = -, bi = 25, 
b2= -15, while 0 = 3 leads toa = a, a2 = 0, b1 = l-and b2 = 3. This last solu- 
tion gives the iteration (1.2) the particularly simple form 

Xn1= Xn -. !wi(x) + f(x.) 
2 f'(xn) - 3f'[x. - 2 Wl(xn)] 

A further suitable choice of parameters which reduces the possibility of cancella- 
tion in the denominator of P2 is obtained by setting b1 = b2 , that is by taking 0 = 

This gives rise to the solution a1 = 1, a2 = 3, b1 = b2 =-3 and (1.2) now takes the 
form 

Xn+1 = Xn - wl(xn) - 3W2(Xn) + 3f(xn) 2 f'(Xn) + f'[Xn - 32W(X) 
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The asymptotic error constant, i.e. the coefficient of e,4 in the expansion of (1.2) 
can be obtained by retaining terms of O[E?, 4] in (2.1)-(2.4) and substituting in (1.2) 
as before. Using the relations (2.6) to simplify, the value of the asymptotic error 
constant is 

C23 C2 C3 1 C4 !(21- ) C-2C + 9 9 c13~P c12 +9 cr' 

where the tedious details of the calculation have been omitted. We see that the value 
6 - simplifies this constant by removing the first term. The corresponding values 
of the parameters are 

11 27 -1183 1911 
a,l=-28' 52' b 64 b2 64 

3. Conclusions. Four fourth order iterative formulae for solving equations have 
been derived which require one function and two derivative evaluations per iteration. 
It is interesting to note that these formulae form counterparts of the iteration func- 
tion given by Traub [1, p. 184 (8-78)] which is of order 4 and uses two values of f and 
one of f' per iteration. The formulae obtained in this paper will be particularly 
appropriate for use in practical root finding problems where the derivative can be 
quickly computed compared with the function. 
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Certification of Parlett's ALGOL Eigenvalue 
Procedure Eig 3* 

By J. M. Varah 

The ALGOL program given by B. Parlett in [1] was tested on the Burroughs 
B5500 at Stanford University, in two ways. First, the program was checked for 
correctness of ALGOL 60 syntax, using a program due to William McKeeman [4]. 
Second, the program was modified to conform to Burroughs Extended ALGOL 
[3], roughly as in [2], and tested on several matrices. The following errors were found: 

1. On p. 477, line 30, if B [1] is zero, a divide by zero may be encountered. If 
the eigenvalue iterate is real, B [4] = 0 so that if B [1] is zero, control is transferred 
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